Immune Response to Bifidobacterium bifidum Strains Support Treg/Th17 Plasticity
نویسندگان
چکیده
In this work we analyzed the immune activation properties of different Bifidobacterium strains in order to establish their ability as inductors of specific effector (Th) or regulatory (Treg) responses. First, we determined the cytokine pattern induced by 21 Bifidobacterium strains in peripheral blood mononuclear cells (PBMCs). Results showed that four Bifidobacterium bifidum strains showed the highest production of IL-17 as well as a poor secretion of IFNγ and TNFα, suggesting a Th17 profile whereas other Bifidobacterium strains exhibited a Th1-suggestive profile. Given the key role of Th17 subsets in mucosal defence, strains suggestive of Th17 responses and the putative Th1 Bifidobacterium breve BM12/11 were selected to stimulate dendritic cells (DC) to further determine their capability to induce the differentiation of naïve CD4(+) lymphocytes toward different Th or Treg cells. All selected strains were able to induce phenotypic DC maturation, but showed differences in cytokine stimulation, DC treated with the putative Th17 strains displaying high IL-1β/IL-12 and low IL-12/IL-10 index, whereas BM12/11-DC exhibited the highest IL-12/IL-10 ratio. Differentiation of naïve lymphocytes confirmed Th1 polarization by BM12/11. Unexpectedly, any B. bifidum strain showed significant capability for Th17 generation, and they were able to generate functional Treg, thus suggesting differences between in vivo and vitro responses. In fact, activation of memory lymphocytes present in PBMCS with these bacteria, point out the presence in vivo of specific Th17 cells, supporting the plasticity of Treg/Th17 populations and the key role of commensal bacteria in mucosal tolerance and T cell reprogramming when needed.
منابع مشابه
Interaction of Bifidobacterium bifidum LMG13195 with HT29 cells influences regulatory-T-cell-associated chemokine receptor expression.
Probiotics play an important role in the maintenance of the gastrointestinal barrier. In addition to direct effects on mucosal integrity, the interaction with the intestinal mucosa may have an active immunoregulatory effect. In the present work, we exposed HT29 intestinal epithelial cells to two Bifidobacterium species to determine their effect on gene expression profile, enterocyte monolayer i...
متن کاملTh17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients.
Intestinal dysbiosis, characterized by a reduced Firmicutes/Bacteroidetes ratio, has been reported in systemic lupus erythematosus (SLE) patients. In this study, in vitro cultures revealed that microbiota isolated from SLE patient stool samples (SLE-M) promoted lymphocyte activation and Th17 differentiation from naïve CD4(+) lymphocytes to a greater extent than healthy control-microbiota. Enric...
متن کاملAntagonistic Action of Lactobacilli and Bifidobacteria in Relation to Staphylococcus aureus and Their Influence on the Immune Response in Cases of Intravaginal Staphylococcosis in Mice
The antibacterial activity of Lactobacillus casei IMV B-7280, Lact. acidophilus IMV B-7279, Bifidobacterium longum VK1, and B. bifidum VK2 strains or their various compositions in relation to Staphylococcus aureus in vitro and on models of experimental intravaginal staphylococcosis of mice was determined. It was found that under the influence of these strains and their various compositions, the...
متن کاملThe Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome
T-helper 17 (Th17) and T-regulatory (Treg) cells are frequently found at barrier surfaces, particularly within the intestinal mucosa, where they function to protect the host from pathogenic microorganisms and to restrain excessive effector T-cell responses, respectively. Despite their differing functional properties, Th17 cells and Tregs share similar developmental requirements. In fact, the fa...
متن کاملBifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells
Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production in...
متن کامل